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Abstract
The hydrology of near‐surface glacier ice remains a neglected aspect of glacier hydrology despite

its role in modulating meltwater delivery to downstream environments. To elucidate the hydro-

logical characteristics of this near‐surface glacial weathering crust, we describe the design and

operation of a capacitance‐based piezometer that enables rapid, economical deployment across

multiple sites and provides an accurate, high‐resolution record of near‐surface water‐level fluctu-

ations. Piezometers were employed at 10 northern hemisphere glaciers, and through the applica-

tion of standard bail–recharge techniques, we derive hydraulic conductivity (K) values from 0.003

to 3.519 m day−1, with a mean of 0.185 ± 0.019 m day−1. These results are comparable to those

obtained in other discrete studies of glacier near‐surface ice, and for firn, and indicate that the

weathering crust represents a hydrologically inefficient aquifer. Hydraulic conductivity correlated

positively with water table height but negatively with altitude and cumulative short‐wave radia-

tion since the last synoptic period of either negative air temperatures or turbulent energy flux

dominance. The large range of K observed suggests complex interactions between meteorological

influences and differences arising from variability in ice structure and crystallography. Our data

demonstrate a greater complexity of near‐surface ice hydrology than hitherto appreciated and

support the notion that the weathering crust can regulate the supraglacial discharge response

to melt production. The conductivities reported here, coupled with typical supraglacial channel

spacing, suggest that meltwater can be retained within the weathering crust for at least several

days. Not only does this have implications for the accuracy of predictive meltwater run‐off

models, but we also argue for biogeochemical processes and transfers that are strongly condi-

tioned by water residence time and the efficacy of the cascade of sediments, impurities, microbes,

and nutrients to downstream ecosystems. Because continued atmospheric warming will incur ris-

ing snowline elevations and glacier thinning, the supraglacial hydrological system may assume

greater importance in many mountainous regions, and consequently, detailing weathering crust

hydraulics represents a research priority because the flow path it represents remains poorly

constrained.
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1 | INTRODUCTION

Most glacial run‐off occurs during the summer melt season and typi-

cally fluctuates according to diurnal energy balance oscillations (Hock,

Jansson, & Braun, 2005). It has often been assumed that the snow‐free

glacier surface imparts minimal delay between meltwater generation

and its delivery to englacial, subglacial, and proglacial environments

(e.g., Fountain & Walder, 1998). However, meltwater storage at an

ablating glacier surface has been inferred from geophysical data (e.g.,

Irvine‐Fynn, Moorman, Williams, & Walter, 2006; Moore et al., 1999)

and meltwater budgets (e.g., Irvine‐Fynn, 2008; Larson, 1978; Smith

et al., 2017). Discrepancies in the timing and volume of modelled abla-

tion and observed meltwater discharge have also been observed for

snow‐free supraglacial catchments in alpine (e.g., Munro, 2011) and

ice sheet (e.g., McGrath, Colgan, Steffen, Lauffenburger, & Balog,

2011; Rennermalm et al., 2013; Smith et al., 2017) settings. Conse-

quently, there has been a growing recognition of the glacial weathering

crust (Müller & Keeler, 1969): the shallow (typically 0.01–2‐m) layer of

porous ice, which typifies ablating glacier surfaces, which has been

referred to as honeycomb or coral ice (e.g., Cutler & Munro, 1996; Zeng

et al., 1984). Despite the recent surge in interest in supraglacial hydrol-

ogy evident in the literature (e.g., Gleason et al., 2016; Karlstrom,

Gajjar, & Manga, 2013; Karlstrom, Zok, & Manga, 2014; Mantelli,

Camporeale, & Ridolfi, 2015; McGrath et al., 2011; Rippin, Pomfret, &

King, 2015; Smith et al., 2015; Smith et al., 2017; St. Germain &

Moorman, 2016; Yang, Karlstrom, Smith, & Li, 2016; Yang & Smith,

2013), a detailed understanding of the hydraulic conductivity (K) and

permeability (κ) of the weathering crust, and their variation in space

and time, is still lacking (Cook, Hodson, & Irvine‐Fynn, 2016; Irvine‐Fynn,

Hodson, Moorman, Vatne, & Hubbard, 2011; Karlstrom et al., 2014).

The porousweathering crust ice layer develops as a function of three

primary drivers: (a) subsurface melt caused by incident solar radiation

(Müller & Keeler, 1969; Munro, 1990), (b) heat flow within interstitial

spaces that further contributes to declining ice crystal cohesion (Hoff-

man, Fountain, & Liston, 2014; Mader, 1992; Nye, 1991), and (c) kinetic

energy and frictional heat transfers from water flow through interstitial

flow paths (Koizumi & Naruse, 1994). The depth of the weathering crust

that develops during synoptic clear‐sky conditions is related toBeer's law

(Cook, Hodson, & Irvine‐Fynn, 2016; Oke, 1987), which defines an

exponential increase in bulk ice density with depth (LaChapelle, 1959)

from ~300–400 to 870–917 kg·m−3 over length scales between a few

centimetres to several decimetres or more (Brandt & Warren, 1993;

Müller & Keeler, 1969; Schuster, 2001; Shumskii, 1964). Factors control-

ling the depth ofweathering crust development include the coefficient of

extinction of incident short‐wave radiation (SWRin), itself governed by

ice type, crystal size, impurity and air bubble content and their emergence

rates, and the zenith angle, intensity, and duration of solar radiation

receipt. Clear skies lead to glacier surface energy balance dominated by

radiative fluxes, which promote weathering crust growth, in some cases

of stagnating ice to a depth in excess of 2 m (Fountain & Walder, 1998;

Larson, 1977). Reduced incident radiation (e.g., due to cloud cover) and

high precipitation cause turbulent energy to dominate the glacier surface

energy balance, promoting surface lowering, which reduces the thickness

of the weathering crust (Müller & Keeler, 1969; Shumskii, 1964). Varia-

tions in the thickness and porosity of the weathering crust at synoptic

and seasonal timescales likely lead to temporal and spatial variability in

supraglacial hydraulic permeability, conductivity, and meltwater storage

potential. The dynamic properties of this near‐surface porous medium

likely influence meltwater transfer, modulating the lag time between

in situ meltwater production and associated run‐off signals (Karlstrom

et al., 2014; Munro, 2011; Smith et al., 2017).

Hydraulic conductivities between 10−2 and 10−6 m s−1 (103 and

10−2 m day−1) for differing depths, sample times, and general surface

topographies have previously been measured for glaciers in Alaska

and Norway (Larson, 1977; Theakstone & Knudsen, 1981; Wakahama,

1978; Wakahama et al., 1973). In contrast, theoretical estimates based

on assumed values for near‐surface ice properties suggest a permeabil-

ity of ~10−10 m2 for the Llewellyn Glacier, Juneau Ice Field, Canada

(Karlstrom et al., 2014), which given a water temperature of 0.1°C

equates to a K‐value to the order of 10‐3 m day‐1. However, as

Theakstone and Knudsen (1981) previously cautioned, rigorous com-

parisons of these types of data should not be made due to marked con-

trasts in geographical location, climatic setting, glacier morphology, and

experimental methods. Rather, these limited observations emphasize

the need to use a standardized approach to characterizing glacier sur-

face hydraulic conductivity across a range of study areas to understand

the processes controlling shallow‐subsurface glacier hydrology.

In addition to controlling and modulating meltwater fluxes, the

importance of weathering crust hydrology is of primary concern for

understanding ice surface nutrient and sediment fluxes and supraglacial

microbial ecology. Redistribution of fine supraglacial debris and dust

across an ablating ice surface is commonly described (e.g., Adhikary,

Nakawo, Seko, & Shakya, 2000; Bøggild, Brandt, Brown, & Warren,

2010; Hodson et al., 2007; Irvine‐Fynn, Bridge, & Hodson, 2011;

Oerlemans, Giesen, & van den Broeke, 2009; Porter, Vatne, Ng, &

Irvine‐Fynn, 2010), whereas hydrological flow paths in the glacier

near surface control the export of microbes and associated nutrients to

extraglacial environments (Cook, Hodson, & Irvine‐Fynn, 2016; Hotaling,

Hood, & Hamilton, 2017; Irvine‐Fynn et al., 2012). The weathering crust

is now recognized as an ecosystem in its own right (e.g., Cook, Edwards,

Takeuchi, & Irvine‐Fynn, 2016; Cook, Hodson, & Irvine‐Fynn, 2016;

Hodson et al., 2008; Irvine‐Fynn & Edwards, 2014; Stibal, Šabacká, &

Žárský, 2012). The hydrological characteristics of the weathering crust

influence microbial activity in cryoconite (Edwards et al., 2011; Hodson

et al., 2007; Stibal, Telling, et al., 2012), and the increased residence time

afforded by percolation within the interstitial voids of the weathering

crust affords microbiota, fine inorganic and organic particles, dissolved

nutrients, and viruses opportunities for interaction and turnover in spite

of the low growth rates and metabolic activities associated with cold

environments (Rassner et al., 2016). Furthermore, legacy contaminant

and particulate impurity transport through glacier systems (e.g., Bogdal

et al., 2009; Hodson, 2014; Łokas, Zaborska, Kolicka, Różycki, &

Zawierucha, 2016; Pavlova et al., 2014) and their accumulation in

downstream environments (e.g., Bettinetti, Quadroni, Boggio, & Galassi,

2016; Bizzotto, Villa, Vaj, & Vighi, 2009; Bogdal et al., 2010) must be

influenced by hydrological flow through the porous near‐surface ice—a

process that remains a contemporary research imperative (Grannas et al.,

2013). For these reasons, with recognition of understanding, the hydraulic

conductivity of theweathering crust assumes significance in the hydrology,

biogeochemistry, ecotoxicology, and ecology of supraglacial systems.
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To address the critical research gap weathering crust hydrological

characteristics represent, we undertook the first multisite study to

assess hydraulic conductivity using a consistent methodology adapted

from terrestrial hydrology. Traditional techniques developed for

groundwater investigations can be applied to glacial environments (e.g.,

Derikx, 1973; Sharp, Richards, & Tranter, 1998). Soil and bedrock

aquifers are porous media with a depth‐limited storage capacity, mak-

ing their measurement techniques transferable to the analogous

supraglacial weathering crust (cf. Hodgkins, 1997; Irvine‐Fynn &

Edwards, 2014; Lliboutry, 1996; Nye, 1991). A novel electronic piezom-

eter was used to monitor water levels and recharge rates in auger holes

at high temporal resolution to derive hydraulic conductivity (K) values.

We describe the findings from eight valley glaciers distributed across

the Northern Hemisphere, and two sites at the western margin of the

Greenland Ice Sheet, and elucidate potential drivers of weathering crust

development and hydraulic properties.

2 | MATERIALS AND METHODS

To examine the hydraulic conductivity, K, of the glacial weathering crust,

we employed piezometer‐based techniques adapted from those used to

measure groundwater transfers (Amoozegar &Warrick, 1986; Freeze &

Cherry, 1979). Recently, a similar approach has been used to examine

the firn aquifer on the Greenland Ice Sheet (see Miller et al., 2017).

2.1 | Electronic piezometer design

Capacitance piezometers have been well described in the literature

(e.g., Baxter, 1997; Reverter, Li, & Meijer, 2007; Ross, 1983;

Wilner, 1960). Here, a complementary metal–oxide semiconductor

device (e.g., Texas Instruments; item TLC555CP) was configured in a

circuit that acts as an oscillator with an output frequency determined

by the capacitance of capacitor C1 and the resistance of resistor R2

(Figure 1a,c). The capacitor was created using a 0.6 m length of

50 mm polypropylene tubing inside which was placed a 50‐cm length

of 1‐mm aluminium angle and a looped 0.25 mm (30 AWG) Kynar insu-

lated silver‐plated copper wire (Figure 1b). The Kynar wire is kept taut

by anchoring the wire with a 3 mm nylon bolt at the top of the alumin-

ium angle, with a 25 mm × 4 mm stainless steel extension spring

secured with a nylon bolt at the base of the aluminium angle (see also

Ross, 1983). Regular holes are drilled around the circumference of the

tube along its length, to allow uninterrupted ingress and egress of

water. The frequency of the output signal scales in proportion to capac-

itance; as the water level rises, capacitance is reduced, output fre-

quency increases, and vice versa. To reduce heat transfer between

the device and ice surface, tubes are coated in adhesive silver foil. This

foil cover was found to reduce the exposed tube temperatures by

0.5 °C when subjected to typical mountain environment conditions.

The addition of a frequency to voltage convertor (e.g., Texas Instru-

ments, LM2907N) produces a single‐ended voltage output of between

1.0 and 2.8 V, which, here, is logged using a self‐powered USB Track‐it

Data Logger (Monarch Instruments). The circuitry and battery are

housed at the top of the piezometer within the plastic tube and require

minimal weatherproofing. The design of the circuit means that output

frequency is independent of supply voltage; therefore, there is

negligible variation to the output signal due to battery depletion, mak-

ing the sensors well suited to deployment in remote environments

where regular battery changes may not be possible. Piezometer output

is close to linear and is not influenced by electrical conductivity,

suspended sediment concentration, or temperature levels within the

limits commonly observed in supraglacial environments (Figure 1d–f).

Calibration of individual piezometers is simply a matter of recording

voltage at a variety of known, incremental water levels and applying a

linear function to the resultant datasets.

2.2 | Electronic piezometers: data processing

Aquifer hydraulic conductivity (K) is commonly assessed using piezom-

eter tests, which quantify the nature of hydrological recovery of an

auger hole following a disturbance to the water level, where auger

holes are either emptied (bail test) or artificially overfilled (slug test)

(Amoozegar & Warrick, 1986; Freeze & Cherry, 1979; Moore, 2002).

A notable issue with the application of slug testing in the glacial envi-

ronment is caused by the low permeability (e.g., Lliboutry, 1971;

Lliboutry, 1996; Nye, 1991) and density gradient (e.g., Müller & Keeler,

1969) of ice when compared with a soil aquifer for which the test was

designed. By introducing additional water to an auger hole, the water

table would artificially rise and water would flow through the unsatu-

rated, higher porosity weathering crust and likely result in an overesti-

mation of in situ K. The bail–recharge method was considered more

appropriate for use in the supraglacial environment, although water

flow into the auger hole occurs isotropically from three dimensions

as a false water head is generated by the empty hole (Figure 2; Moore,

2002). However, by considering the rate of water level rise, this phe-

nomenon can be eliminated mathematically with several solutions pro-

posed, including the formulation by Bouwer and Rice (1976):

K ¼
Q⋅ ln

Re

rw

! "

2π⋅L⋅y
(1)

where Q is the water flow into the auger hole (cm3 s−1) and the

remaining length terms (all in centimetres) include L, the height of the

well through which water enters; y, the vertical distance between the

water surface in the auger hole and the equilibrium water table; Re,

the effective radius over which y is dissipated, and rw, the radius of

the auger hole. For the equation to be valid, a single auger hole is

required, and it is specifically applicable to partially penetrating,

unsealed wells in unconfined aquifers, such as the weathering crust.

Q can be defined through knowledge of the auger hole dimensions

and the recharge rate detailed in the output from the piezometer as

the water level recovers. Although Re can be determined empirically

using axisymmetric node networks (Bouwer & Rice, 1976), the term

ln(Re/rw) can be determined using an approximation given as:

ln
Re

rw

! "
¼ 1:1

ln h
rw

# $þ Aþ B⋅ ln D−hð Þ=rw½ &
L=rw

2

4

3

5
−1

(2)

for which D is the distance between the water table in the aquifer and

the impermeable ice representing the base of the aquifer and h the

depth of the water in the auger hole (both in centimetres). A and B

are dimensionless constants, determined using the ratio L/rw (see
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Bouwer & Rice, 1976). One condition of the empirical approximation

presented in Equation 2 is that 0 < (D − h)/rw ≤ 6; if these conditions

are not met, (D − h)/rw is adjusted to equal 6.

Following the derivation of K, primary ice permeability (κ) can be

calculated, after Bear (1972):

κ ¼ K
μ

ρwg
(3)

where ρw is the density of water (taken as 1,000 kg m−3), g is acceler-

ation due to gravity (0.981 m s−2), and μ is the dynamic viscosity of

water (in Pa s). Water viscosity is temperature dependent (Figure 3),

and in the range of interest characteristic for supraglacial water

temperatures (<2 °C; Isenko, Naruse, & Mavlyudov, 2005), it is useful

to note that viscosities are 1.4 to 1.8 times that at 20 °C.

2.3 | Hydrological data collection

Bail–recharge tests were conducted at 10 sites across the northern

hemisphere cryosphere, bridging a range of latitudes and climatic set-

tings (Table 1; Figure 4). At Haut Glacier d'Arolla, Switzerland, and

Fountain Glacier Bylot Island (HACH and FGBI, respectively), holes

were drilled at strategic locations along transects or semi‐randomized

grids within a defined supraglacial microcatchment, whereas on the

K‐transect of western Greenland (GRDS), nine holes were distributed
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across a 30 × 30 m grid. At other sites including those in Sweden (SGSE

and RGSE), in Austria (RMOS and GBOS), at the Greenland Ice

Sheet margin (GRKM), and in Svalbard (PBSV and FFSV), experiments

were conducted opportunistically using glacier‐wide randomized grid

sampling or short transects over smaller, hydrologically active areas.

At all sites, 36 cm deep auger holes were drilled using a 5 cm diameter

Kovacs drill. The auger hole depth enabled the upper 30 cm of the

weathering crust to be examined, as there is a 6 cm dead space at the base

of the piezometer. Auger holes were emptied using a biOrb™ manual

syphon with a 5 cm nozzle head. The piezometer was inserted immedi-

ately, and recharge monitored at 2 s intervals. In cases where auger holes

were reused during a single day, ablation resulted in some widening of the

uppermost 5 cm of the auger hole, but this had negligible influence upon

the bail–recharge experiments due to the water table typically found

approximately 14 cm below the glacier surface. The representativeness

of the 36 cm deep auger holes is assessed in Section 3.1.

The time series of auger hole water column height were converted

to recharge water volume and corrected to account for water displace-

ment arising from piezometer installation. Recharge curves were man-

ually examined and divided into three distinct stages (Figure 5): (a)

Stage 1 is a linear stage that represents pressure‐driven recharge as a

result of the artificial water head generated by the presence of the

bailed auger hole within the weathering crust; (b) Stage 2 is a nonlinear

decreasing stage (i.e., recharge rate falls with time/rise in auger hole

water level), identified as representing a reduction in the influence of

pressure‐driven flow from three dimensions and representing the flow

of water through an undisturbed weathering crust (i.e., the idealized

water table in Figure 2). Stage 3 is a linear stage with a gradient of 0,

at which point water in the auger hole is equilibrated with the level

of the water table in the surrounding weathering crust (Figure 5).

Hydraulic conductivity, K, was calculated using Equations 1 and 2,

where recharge rate derived from Stage 2 defines Q, and the stable

water level at Stage 3 substituted for y. To ensure y ≠ 0, the Stage 3

auger hole recharge data were filtered and limited to 0.01 V below

the voltage observed for the static equilibrium water table water

depth. In the discrete cases where the auger hole exhibited incomplete

recharge, either ywas defined using a repeat or proximal measurement

within 10 min of the curtailed measurement, or a mean water table

depth for the specific glacier was used.

In the absence of detailed weathering crust density profiles with

depth, we parameterized D (Equation 2) to be 40 cm, which ensured

the ratio L/Rw equalled 14.4; consequently, following Bouwer and

Rice's (1976) condition that for 7 < L/rw < 16, constants A and B

(Equation 3) are defined as 2 and 0.25, respectively. The uncertainty

related to this assumption was negligible: In cases where D exceeds

40 cm, there is no change in the estimated K, whereas if D − h was

reduced to the smallest possible value within the piezometer's

measurement capabilities, there is an underestimation in K of only 6.5%.

To quantify the uncertainties that resulted from the manual definition

of Stage 2 in the recharge curve, a subsample of 25 recharge curves

was selected randomly, covering all glaciers and a representative range

of recharge rates. By identifying potential errors in the location of the

transition between Stages 1 and 2 in this subsample, uncertainty in the

calculated K was estimated as ±4.8% and again considered negligible.

2.4 | Ancillary data collection

Automated weather stations were installed locally at all sites apart

from GBOS and RMOS. In a few cases, missing data were interpolated

using data from the nearest alternative weather station. Where SWRin

data were unavailable, it was modelled (Irvine‐Fynn et al., 2014) and a

cloud cover correction applied using observations from local weather

stations (see Greuell, Knap, & Smeets, 1997). Modelled data correlated

well with measured values during the period for which directly mea-

sured SWRin was available (r2 = 0.81). With these data, cumulative

energy input (MJ m−2) from SWRin since the last freeze event (i.e., tem-

perature < 0 °C) was calculated to explore the qualitative observations
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of Müller and Keeler (1969) regarding weathering crust development

processes. For glaciers with full meteorological data, meltwater pro-

duction (M) was modelled using a point‐based energy balance model

(Brock & Arnold, 2000) at all auger hole sites for each glacier, with a

modification applied to arctic glaciers to account for the high solar azi-

muth (Irvine‐Fynn et al., 2014).

3 | RESULTS

3.1 | Piezometer evaluation

First, to assess the representativeness of the 36 cm auger holes, com-

parisons were made with proximate holes with depths of 16 and

26 cm at FGBI and GRDS, with additional 46 cm deep auger holes at

the former site (Figure 6). Auger holes were located within ~0.5 m of

each other over a visually similar ice type, to minimize the influence of

hole‐to‐hole disturbance and mitigate spatial variations in ice structure.

Shapiro–Wilk tests highlighted the hydraulic conductivity datawere not

normally distributed at either site. For FGBI, an independent‐samples

median test highlighted no significant difference in median values of K

between different hole depths (p < 0.05). However, a Kruskal–Wallis

test indicated a difference in distribution of K‐values across the four

contrasting auger hole depth groups (p < 0.05), with the bounds of total

ranges and interquartile ranges decreasing with an increase in auger

hole depth. Dunn's post hoc testing indicated that only the 46 and

16 cm groups were significantly differently distributed from each other

(p < 0.05). Similarly, for GRDS, an independent‐samples median test

indicated that median K was significantly different between the three

groups (p < 0.05). A Kruskal–Wallis test indicated that distribution of

K across the three depth groups was significantly different (p < 0.05),

with Dunn's post hoc testing indicating the presence of a pairwise sig-

nificant difference in data distribution only between the 26 and 36 cm

groups (p < 0.05). However, there is no significant difference between

any of the depth groups and the overall median for GRDS.

As there is no systematic significant difference between median

K‐values for auger holes of 16, 26, 36, and 46 cm in depth, any of these

depths could have likely been selected as a methodological optimum. A

shallow hole would require a smaller volume of water to fill and would

enable a greater frequency of measurements to be recorded in a fixed

period and may increase clarity of temporal trends, especially over a

diurnal timescale. However, when the water table is low, shallow holes

may be unsuitable as they may be perched above the water table,

resulting in an inability to assess hydraulic conductivity. Conversely, a

deeper auger hole (e.g., 46 cm) would be unlikely to have such an issue

but would take longer to fill, reducing the frequency of K measure-

ments. As such, we recommend and adopted 36 cm as an optimum

auger hole depth as a compromise to maximize the frequency of data

collection for assessment of weathering crust hydraulic parameters.

FGBI

GRDS / GRKM

PBSV / FFSV

HACH

RMOS / GBRS

SGSE / RGSE

FIGURE 4 A hemispheric location map of glaciers sampled within this
study. Letter codes are identified within Table 1

Stage 1 Stage 3Stage 2

)b)a

FIGURE 5 (a) An idealized recharge curve related to a schematic cross section (b) of the auger hole. In (b) each dashed line indicates the position of
an idealized water table. During Stage 1, anisotropic, pressure‐driven flow dominates due to the large hydraulic head generated by the presence of
an auger‐hole‐generated (in black) sink in the water table. Through Stage 2, this influence is reduced (although still prevalent), but the influence of this
false water head decreases as the hole fills (aligning with the nonlinear stage in Panel a). At Stage 3, the water level in the borehole is equilibrated with
the surrounding water table and recharge stops as the auger hole becomes equilibrated with the surrounding weathering crust water table
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To ascertain the repeatability of the bail–recharge method, rapid

(<15 min) repeat measurements were undertaken at four sites (PBSV,

SGSE, GRKM, and GRDS). All repeat measurements were recorded

within a maximum 30 min window to minimize any temporal variations

in K. During these repeats, a constant equilibrium water table depth

was assumed (range within ±5% of the mean) to prevent the undesir-

able influence of a falling water table due to aquifer drainage upon K.

Relative standard deviation (n = 19) across the four sites was 40.9%.

Of note, the contrast in medians reported for varied auger hole depths

also all fell within this error associated with repeatability. Although this

may appear initially to represent a high level of uncertainty in our esti-

mates of K, typical ranges of K in groundwater studies cover a range of

13 magnitudes (Freeze & Cherry, 1979), and quantification of K to

within one order of magnitude is usually sufficiently precise for most

analyses (Younger, 2009). Our calculated relative standard deviation

falls within this acceptable range, and as such, we are confident that

our single‐measure method provided suitably reliable and precise esti-

mates of K within the weathering crust.

3.2 | Quantification of and controls upon K

A total of 280 successful recharge experiments were conducted on 10

northern hemisphere glacier ablation zones. Twenty‐five unsuccessful

experiments were reported in which holes were not refilled to >6 cm

depth; these were typically associated with cloudy and/or rainy condi-

tions but had no clearly systematic cause and occurred apparently

randomly across all glacier sites. Mean K across the eight field

sites was 0.185 ± 0.019 m day−1 (σ = 0.310 m day−1, range = 0.003–

3.519 m day−1). Mean permeability was 0.384 ± 0.060 m2 (with a range

from 0.018–3.451 m day−1). Neither hydraulic conductivity nor perme-

ability data were normally distributed (Shapiro–Wilk, n = 280 and 111,

respectively, p < 0.05). Ranges and medians of K at each glacier plotted

with site latitude as a variable (Figure 7) highlighted a potential rela-

tionship between latitude and K: A statistically significant, weak posi-

tive correlation existed between the variables (Spearman's r = 0.140,

p < 0.05, n = 280).

To interrogate the environmental factors that may define K, spe-

cifically examining differing stages of weathering crust development,

further nonparametric correlations were undertaken between K and

potential explanatory variables. Such variables included water table

height, as measured from the base of the 36‐cm auger holes according

to the Stage 3 piezometer recharge records. The potential for the

water table to be influenced by the melt rate and ingress of surface

water into the weathering crust was further considered by using site

altitude and the energy balance model melt output (M) for the 1 hr

time period preceding the observation of K as explanatory variables.

Further, on the basis of Muller and Keeler's (1969) conceptual model

of weathering crust development, cumulative SWRin receipt since (a)

freezing, (b) the previous rainfall event, and (c) the period of dominant

turbulent fluxes was calculated as variables.

Freezing of interstitial meltwater may reduce interstitial pore size

and decrease the hydraulic conductivity of the weathering crust. How-

ever, given the latent heat released during the refreezing of interstitial

meltwater (see Paterson, 1994), a period of freezing air temperature

for hours or even days is unlikely to result in complete refreezing of

the liquid component of the weathering crust. However, it is important

to note that such a cold wave propagates downwards (Irvine‐Fynn,

Hodson, et al., 2011; Paterson, 1994), so any refreezing will occur in

m day-1 m day-1

FIGURE 6 Change in K with auger hole depth for (a) FGBI and (b) GRDS, indicating median for each site (solid vertical line) of 0.183 and
0.220 m day−1, respectively. Sample sizes (n) are noted on the right of the diagram. *Note one outlying data point >1.5 m day−1

FIGURE 7 Box‐and‐whisker plot showing
hydraulic conductivity of holes of 36 cm depth
across all glaciers within the sample set, with
latitudes displayed in degrees north of the
equator. Sample sizes (n) are noted on the right
of the diagram. *Note, the x axis is limited to
1.5 m day−1, with one outlying point above this
limit at GBOS, with a value of 3.519 m day−1
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the less dense, more porous upper weathering crust and hence may

have a greater influence on K than would be expected. Rainfall events

and cloudy periods, where turbulent fluxes dominate the energy bal-

ance equation (see Hock, 2005), are identified as crucial for resetting

of the weathering crust surface (Müller & Keeler, 1969). Observations

of summer rainfall are limited within our dataset; however, we assume

that precipitation, as measured at local automated weather stations, is

in the form of rain either supported by in situ observations or as

defined by air temperatures in excess of 4 °C. For the available data,

two periods of rainfall were identified, one at HACH, comprising a

10 hr period of overnight rainfall (17 mm total) and another at SGSE/

RGSE, where 2.4 mm of rain fell in 8 hr. Melt modelling data are used

to determine the ratio of SWRin : turbulent fluxes at each glacier site,

with a period of dominant turbulent energy flux (DTEF) defined as

when >50% of energy for melt is supplied by turbulent fluxes for a

duration of at least 3 hr. This duration is selected to ensure that the

predominant weather pattern is that of a cloudy sky, rather than a

low sun angle and high air temperatures, which can occur during sun-

rise and sunset. Available meteorological data allowed for determina-

tion of this variable at GRDS and SGSE/RGSE. For GRDS, two DTEF

periods were observed, both between midnight (00:00) and 07:00

when the solar azimuth was low: Total melt during the two periods

was 1.71 and 0.57 mm water equivalent. A more marked period of

DTEF was observed at RGSE and SGSE, with a 37 and 39 hr DTEF

period with 27.06 and 25.03 mm water equivalent of melt, respec-

tively. With freezing, rainfall and DTEF periods being indicative of (at

least partial) resetting of the weathering crust, cumulative SWRin

should identify the subsequent increase in near‐surface ablation, the

disaggregation of ice crystals, and increase in porosity and hydraulic

conductivity.

The following significant (p < 0.01) monotonic correlations are

highlighted between K and the following independent variables

(Table 2): (a) negative correlation with cumulative SWRin since freez-

ing; (b) strong negative correlation with cumulative SWRin since previ-

ous DTEF period; (c) weakly negative correlation with altitude; and (d)

strongly positive correlation with water table height.

Similar analysis was undertaken for permeability (κ; Table 3) for

PBSV and HACH located at each extreme of the latitudinal range of

field sites within this study. Mean auger hole water temperatures were

0.57 ± 0.02 and 0.17 ± 0.01 °C, with ranges of 0.20–0.90 and 0.10–

0.40 °C, respectively. This yielded permeability values ranging over

three orders of magnitude from 0.018 and 3.45 m2. However, with

auger hole water temperature data only available for two glaciers,

our interpretations are limited. By estimating a mean water tempera-

ture for all other glaciers, any correlations with environmental variables

would simply mirror those reported for K (see Equation 5).

4 | DISCUSSION

Ablating glacier surfaces are characterized by a porous ice weathering

crust that may influence meltwater, sediment, microbial cell, and nutri-

ent storage and transport (Edwards et al., 2011; Hodson et al., 2007;

Irvine‐Fynn et al., 2012; Munro, 2011; Stibal, Šabacká, et al., 2012;

Stibal, Telling, et al., 2012). Here, we have presented data from a

low‐cost capacitance piezometer, which, to our knowledge, is the first

comprehensive set of measurements across multiple glacier sites using

a standardized methodology to describe K for weathering crust ice.

TABLE 2 Correlation matrix highlighting monotonic relationships with hypothesized controls upon hydraulic conductivity (K) of the weathering
crust

Glacier n Cumulative SWRin 0 °C Cum. SWRin precipitation Cum. SWRin DTEF Elevation Water table Melt

PBSV 54 0.398** — — −0.321* 0.547** 0.520**

FFSV 9 — — — — 0.786* —

FGBI 40 0.281 — — 0.173 0.375* —

RGSE 12 0.272 0.272 0.272 0.203 0.835** −0.488

SGSE 31 −0.050 −0.050 −0.050 0.428* 0.249 0.212

GRDS 40a 0.209 — −0.133 (30) 0.123 0.639** 0.225

GRKM 23 — — — — 0.352 —

GBOS 7 — — — −0.40 0.809* —

RMOS 7 — — — −0.378 −0.204 —

HACH 57a 0.098 0.112 (19) — 0.168 0.306* −0.253

All 280a −0.404** (234) 0.134 (62) −0.658** (73) −0.256** 0.710** −0.52 (129)

Note. Sample number, n, is indicated in brackets. Values shown are Spearman's r with significant values (two‐tailed) marked.
aWith missing cases or lacking data.

*p < 0.05. **p < 0.01.

TABLE 3 Correlation matrix highlighting monotonic relationships with
hypothesized controls upon permeability (κ) of the weathering crust

Glacier n Cumulative SWRin Elevation Water table Melt

PBSV 54 0.398** −0.321* 0.548* .519**

HACH 57 0.093 0.171 0.304* −.272

All 111 −0.165 −0.291** 0.574** .415**

Note. Values shown are Spearman's r with significant values (two‐tailed)
marked. Latitude is not considered as independent variables due to a lack
of data.

*p < 0.05. **p < 0.01.
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4.1 | Application of piezometer and Darcian flow
model to the weathering crust

The piezometer described provides high‐resolution water‐level data.

The application of the piezometer in supraglacial environments

enabled quantification of the hydraulic properties of the weathering

crust and was used to test the applicability of Darcy's law to the

weathering crust. Darcy's law describes diffuse water flow through a

homogenous porous media and is not applicable where flow is con-

fined to or influenced by discrete conduits (karstic flow: Moore,

2002). Karstic flow would cause the recharge curves to show irregular

or abrupt step changes where water suddenly enters a conduit (e.g.,

Hartmann, Goldscheider, Wagener, Lange, & Weiler, 2014). This char-

acteristic or phenomenon in the recharge curves was not observed in

our data, indicating that flow through the weathering crust appears

to be effectively homogenous at the synoptic scale and that Darcy's

law can be applied broadly with confidence to weathering crust

hydrology.

4.2 | Hydraulic conductivity of the weathering crust

At the 10 sites examined across the northern hemisphere, mean

weathering crust Kwas 0.185 ± 0.019 m day−1. This value is equivalent

to those reported for sandstone (10−1–101 m day−1) or stratified clay

soil (10−1–102 m day−1; Bear, 1972), and hence, hydrologically, the gla-

cial weathering crust can be considered as a poor, impervious aquifer.

This also compares well, albeit an order of magnitude lower, to the

recent 100–102 m day−1 estimates for the hydraulic conductivity of

firn on alpine glaciers (e.g., Fountain, 1989; Schneider, 1999) and the

Greenland Ice Sheet (e.g., Miller et al., 2017). Our K‐values are the

same order of magnitude as those reported for ablating glacier ice by

Cook, Hodson, and Irvine‐Fynn (2016), and similar to the lower order

estimates given by previous site‐specific studies (e.g., Karlstrom et al.,

2014; Larson, 1977; Theakstone & Knudsen, 1981; Wakahama,

1978; Wakahama et al., 1973). Our estimated ranges of weathering

crust hydraulic conductivity still encompassed the values derived from

Medenhall and Llewellyn Glaciers (Juneau Icefield, Alaska/British

Columbia) despite the absence of such a maritime environment in the

study sites reported here.

The estimates of K in the weathering crust approaching that of

sandstone or clay would seem surprising, given the degrading near‐sur-

face ice surface would suggest a higher porosity and potentially an

increased hydraulic conductivity. However, hydraulic permeability

and conductivity are also governed by the scale of and linkage

between void spaces in a porous medium (Bear, 1972). Both the angu-

larity of ice crystals and the immobile viscous water layers that sur-

round them (Nye, 1991) reduce the hydraulic conductivity through,

by simultaneously increasing microscale flow path tortuosity and

reducing permeability. Water movement in the uppermost 2 m of a gla-

cier is typically driven upward due to the near‐surface water pressure

gradient (Lliboutry, 1996) that can be influenced by meteorological

conditions and is complicated further by the capillary force that retains

and restricts water flow (Bear, 1972), allowing flow in opposition to the

gravity‐ and slope‐driven directions. Moreover, observations of local

water tables identified in open cryoconite holes suggest that the water

table is commonly several centimetres to ~30 cm below the ice surface

(Bøggild et al., 2010; Cook, Edwards, et al., 2016; Cook, Hodson, &

Irvine‐Fynn, 2016), and so K is retrieved for depths below the most

porous surface ice. Combined with the near‐surface density gradient,

these mechanical conditions may in part explain the low K identified

for the apparently porous weathering crust. Studies conducted in the

1970s and 1980s used contrasting methods, including dyes such as

ink (Wakahama et al., 1973) and fluorescein (Theakstone & Knudsen,

1981). Ink and tracer dyes such as fluorescein and rhodamine are

highly dispersive within water (Smart & Laidlaw, 1977); therefore, the

use of dyes may result in an overestimation of K, as the tracer will likely

have dispersed through the subsurface water column rather than act-

ing conservatively and matching the water flow rate. Theakstone and

Knudsen's (1981) work focused on the quantification of meltwater

flow rates through the supraglacial drainage network, and they only

estimated the delay to flow caused by the weathering crust as a com-

ponent of this. Despite this difference in emphasis, our upper esti-

mates for K coincide with Theakstone and Knudsen's median

estimates, whereas the difference compared to the K‐value reported

for Medenhall Glacier (Karlstrom et al., 2014) may simply be due to

the particular environmental and climatic setting, solar radiation

receipt, and synoptic progress through individual melt seasons.

One issue arising with the use of pumped wells (e.g., Larson, 1977)

for the estimation of K in glaciological environments is that the tech-

nique requires the addition of water, which causes a local increase in

water table height. As SWRin receipt decreases with depth in the near

surface (Cook, Hodson, & Irvine‐Fynn, 2016; Oke, 1987), it is expected

that pore size, permeability, and K will also decrease. The inverse is

also true, so by introducing a false rise in the water table, K is measured

through more porous ice, which is typically above the equilibrium

water table and hence not necessarily describing K for the true trans-

mission of meltwater at a given point in time and generating artificially

elevated estimates of its value. To emphasize this assertion, our data

show that an increase in water table height correlates with an increase

in K and highlight the need to consider methods of describing hydraulic

conductivity cautiously.

4.3 | Controls upon hydraulic conductivity of the
weathering crust

In the weathering crust, the mechanism for pore enlargement is

hypothesized as the cumulative receipt of subsurface SWRin and inter-

nal melt of ice (Cook, Hodson, & Irvine‐Fynn, 2016; Hoffman et al.,

2014; Müller & Keeler, 1969). This is evidenced by the lower bulk den-

sity and greater intergranular pore space of the weathering crust when

contrasted with unweathered glacier ice (LaChapelle, 1959; Nye,

1991). This enlargement of intercrystalline pores would result in an

increase in hydraulic conductivities. The energy available for

weathering crust development is constrained by latitude, typically with

more intense SWin and higher summer season air temperature even at

elevation in lower latitudes. Latitude is weakly positively correlated

with K, but Figure 7 indicates that the highest K‐values are observed

in the 67–72°N latitude band. This relationship is complicated by

regional climatology, synoptic meteorology, and local altitude and

topography (Barry, 2008). For example, summer cloud cover and
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precipitation are common in both the Alps (e.g., Rudolph, Friedrich, &

Germann, 2011) and High‐Arctic Svalbard (e.g., Førland & Hanssen‐

Bauer, 2000), and these conditions are known to reduce or minimize

weathering crust development (Müller & Keeler, 1969). Shading by

surrounding terrain will also affect SWRin receipt and moderate the

formation and evolution of a porous surface ice layer, whereas partic-

ularly in middle and high latitudes, as a consequence of solar geometry,

glacier orientation and surface slope may become more influential.

Sites characterized by higher katabatic wind speeds may experience

elevated turbulent energy fluxes that reduce the efficacy of

weathering crust development.

The analyses seeking to identify such additional potential control-

ling factors on K in terms of cumulative SWRin receipt since any partial

or complete resetting of the weathering crust resulted in less intuitive

conclusions. The negative correlations between K and SWRin since last

freezing and DTEF periods indicated that as the weathering crust

developed, there was a reduction in the hydraulic permeability. This

was unexpected as low radiative and high turbulent energy transfers,

such as cloudy periods, often including rainfall, have been anecdotally

linked with weathering crust removal (Müller & Keeler, 1969). Conse-

quently, such synoptic conditions were expected to be associated with

lowered K, as was evident from several of the failed recharge experi-

ments. Here, to explain the apparently inverse relationship between

K and cumulative SWRin, we suggest that the development and rise

of a water table is not necessarily coincidental with progressive ice

crystal disaggregation; the rise in the water table may lag behind the

creation of intergranular void space, implying a low water table is asso-

ciated with low K‐values. Supporting this argument is the observation

that K is not correlated solely with the melt that might be expected to

increase the water table height and hence hydraulic conductivity. This

implies that additional processes are occurring, which preclude any

direct relationship between melt rate and K: For example, there could

be refreezing at depth within the weathering crust and reduction of liq-

uid water volume, or the low transmission rates incur delay as pore

spaces are filled. Here, there may be analogies with the progress of

the wetting front in a snowpack (e.g., Marsh & Woo, 1984) or infiltra-

tion to frozen soil (e.g., Gray, Toth, Zhao, Pomeroy, & Granger, 2001),

but to develop this level of process understanding would require fur-

ther investigation.

The additional complexity hydrology itself may impart on defining

K is best evidenced by the positive relationship between K and water

table height. Observations from cryoconite holes suggest there is a

variable water table height within the weathering crust both at

subdiurnal and synoptic timescales (e.g., Cook, Hodson, & Irvine‐Fynn,

2016). These variations may arise from the bulk density increase with

depth within the weathering crust or because of a changing local base

level. Once the ability of the weathering crust to transport water is

exceeded by the melt input, the water table will rise into the increas-

ingly more porous near‐surface ice, and the piezometer‐derived K

value increases. Hydraulic conductivity and hydraulic gradient may, in

this scenario, also rise if the base level for the drainage pathway

remains broadly the same due to the dampened response of the

supraglacial stream network to peak melt (e.g., Munro, 2011; Smith

et al., 2015, 2017). However, as the weathering crust is drained as melt

rates and associated water inputs reduce overnight and the

supraglacial stream base level drops, the water table and pressure head

fall; hence, K is reduced. Our feedback loop between meltwater input,

water table height, and K would explain why K and melt do not directly

correlate as a response time is required, dependant on infiltration rate,

for the water table level to rise.

Our data from 10 glacier sites show that K exhibited values over a

range of four magnitudes (relative standard deviation of ~180%), and

even upon individual glaciers, there is a high local‐scale variability

(Figure 7). Although the relationships described above provide some

indications of conceivable causes in the variability in K‐values, there

are clearly complex interactions between potential driving meteorolog-

ical variables, which are problematic to disentangle without further

study. However, one further aspect that influences the fabric of the

weathering crust and hence the nature of the pores within is the

microscale ice structure, which is difficult to characterize and quantify

and is not included within this dataset. Ice structure and fabric will

directly condition pore size and shape, interstitial connectedness, and

tortuosity and therefore likely influence the hydraulic behaviour of

the weathering crust. Ice structure and fabric can vary across a range

of length scales (see Hambrey & Lawson, 2000; Hudleston, 2015).

Consequently, crystal size, packing and orientation may play an impor-

tant role in defining the rate and location at which water infiltrates and

is transferred through the weathering crust, by controlling potential

pore size, shape, and geometry once crystal boundaries are preferen-

tially melted to form pores.

Our data highlight that the hydrological properties of the

weathering crust are conditioned by an array of influential factors,

ranging from the meteorological conditions and their synoptic progres-

sion prior to evaluation of K to the hydrological and structural charac-

teristics of the near‐surface ice itself. We also hypothesize that glacier

ice dynamics and net ablation may have the capacity to modulate the

weathering crust and its hydrological behaviour: Glaciers exhibiting

higher ice emergence rates may offset the evolution of a deeper

porous surface layer, and enhanced rates of ablation and run‐off may

lead to an abundance of rills and streams that through energy transfers

and evolving topographic variability can degrade the weathering crust

and slow its vertical evolution and spatial extent. Such hydrological dis-

turbance may also be affected by glacier surface slope (e.g., Hodson

et al., 2007; Mantelli et al., 2015; Rippin et al., 2015). Here, it is clear

that more systematic surveys of K under constrained environmental

parameters, and over extended time frames, are required to better

define the primary drivers and rates of weathering crust development

and its spatial and vertical extent at subcatchment to glacier scales.

4.4 | Hydrological role of the weathering crust and
relevance to impurity transport

This study highlights a typically overlooked component of the

supraglacial hydrological system. Near‐surface glacier ice has tradition-

ally been considered as essentially impermeable (e.g., Hodgkins, 1997)

with an abrupt, almost immediate, hydrological response time (e.g.,

Fountain & Walder, 1998). Our data emphasize the weathering crust

as a hitherto neglected yet important aspect of supraglacial hydrology.

The presence of a water table at depth below the ice surface empha-

sizes the potential for short‐term meltwater storage, retention, and
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delay in run‐off. We propose that as surface ice ablates during the

ablation season, under clear‐sky conditions, the weathering crust

develops (Müller & Keeler, 1969) and meltwater is routed through this

near‐surface layer. As our data show, meltwater flow through the

weathering crust can be relatively slow, yet supraglacial stream dis-

charge response to peak melt typically occurs within <12 hr (Munro,

2011). The hydraulic conductivities calculated here, coupled with typ-

ical ≤101 m channel spacing upon glacier surfaces (e.g., Karlstrom et al.,

2014), imply that a parcel of meltwater could remain within the

weathering crust for a minimum of 34 hr. Therefore, our observations

directly support the notions of hydrological delay and water storage

within the weathering crust conjectured by Munro (2011) and Smith

et al. (2017).

At synoptic and diurnal timescales, we hypothesize that in

response to the energy balance, additional new meltwater enters the

weathering crust, causing the water table to rise, which positively influ-

ences K and either overrides or displaces old stored or retained melt-

water. This type of water turnover is common for rainfall events in

terrestrial environments (e.g., Brutsaert, 2005; Lu & Godt, 2013).

When melt production exceeds the infiltration rate of the weathering

crust or the water table rises to the surface, it would be expected that

saturated sheet flow might occur over the surface; however, due to the

complex nature of glacier surfaces, sheet flow is uncommon and was

not observed during our observation periods, and drainage via rills

and small streams evolves quickly (e.g., Mantelli et al., 2015). However,

the observation of K being dependent on water table elevation sug-

gests the hydraulic properties exhibit a gradient with depth in the near

surface, which is also spatially and temporally variable. The proportions

of meltwater that may be delayed at a variety of timescales in their

delivery to supraglacial rill and stream networks and the subsequent

modulation of channel hydrographs remain undefined.

The presence of a near‐surface aquifer on ablating glacier surfaces

with a low hydraulic conductivity may also have significant implications

for the transfer of impurities across exposed ice and affect biogeo-

chemical cycling. Here, we argue that on the basis of contemporary

understanding, there is a need for future research to explore a range

of these potential affects. Considering the characteristic and ubiquitous

presence of fine inorganic dust (e.g., Oerlemans et al., 2009; Takeuchi,

2002), microbes (e.g., Hodson et al., 2008; Irvine‐Fynn & Edwards

2014; Stibal, Šabacká, et al., 2012), and other particulate impurities

and contaminants (e.g. Hodson, 2014) on glacier surfaces, the poor

hydraulic conductivity of the weathering crust may have important

implications on the transport rate of such particulates. To date, there

has been no clear or detailed assessment of the rates at which impuri-

ties are transferred over ablating ice surfaces. Irvine‐Fynn et al. (2012)

reported inefficient transport processes through and storage of micro-

bial cells within the near surface of arctic glaciers. Here, the low K‐

values reported for numerous glaciers align well with such an assertion

of inefficient water transfer. However, the relationship between impu-

rity transport and K is unlikely to be a simple linear function due to the

potential of the weathering crust to act as mechanical filter, preventing

transfer of particles with diameters in excess of pore sizes, or biochem-

ical and physiochemical processes resisting or accentuating impurity

transport (e.g., Dolev, Bernheim, Davies, & Braslavsky, 2017; Jepsen,

Adams, & Priscu, 2006, 2010;Mader, Pettitt,Wadham,Wolff, & Parkes,

2006). Therefore, fluctuations in the water table and of varied hydraulic

conductivity at diurnal or synoptic timescales, or over space, may be

crucial in defining the character of impurities transported through or

from a glacier's surface. Indeed, recent work has suggested that water

flux and the hydraulic delivery of dissolved nutrients within meltwater

to surface microbial habitats may be a crucial influence for microbial

community structure and activity (e.g., Dubnick et al., 2017; Edwards

et al., 2011; Hotaling et al., 2017) and control downstream ecology

and characteristics (e.g., Singer et al., 2012; Wilhelm, Singer, Fasching,

Battin, & Besemer, 2013). Furthermore, when combined with typical

in situ doubling times of the water‐borne cryospheric microbial commu-

nities of <60 days, and in some instances <5 days (Anesio et al., 2010),

and clear evidence of their capacity to influence nutrient cycling (Scott,

Hood, & Nassry, 2010), the potential for the supraglacial weathering

crust as a microbial habitat (Irvine‐Fynn & Edwards, 2014) merits fur-

ther investigation. Specifically, the retention of mineral dust and

microbes within the weathering crust holds the potential to contribute

to supraglacial biogeochemical cycles. For example, increased residence

time within the weathering crust permits greater interactions between

dust, dilute nutrients, low‐density bacterial hosts, and their viral para-

sites (Rassner et al., 2016). The hydraulics of the weathering crust,

and the recognition of old and newmeltwater, may hold potential influ-

ence on the transfer rates for solutes and dissolved organic compounds

or contaminants within the glacier system. However, the in situ fate of

supraglacial solutes, organic compounds, and contaminants during the

ablation season still remains poorly characterized.

As both Grannas et al. (2013) and Hotaling et al. (2017) concluded,

there remains a pressing need to better constrain the nature and

variability of supraglacial hydrological flow paths, particularly to

define their impact on contaminant and impurity transfer, microbial

communities, and biogeochemical function for both glacier surfaces

and glacier‐fed ecosystems. This is particularly significant under the

spectre of projected future changes to glacier and ice sheet run‐off

regimes (e.g., Bliss, Hock, & Radic, 2014; Franco, Fettweis, & Erpicum,

2013). In many glacierized regions, atmospheric warming, rising

snowlines, and expanding ablation areas may result in extensive

supraglacial hydrology even as total glacier areas decline. Similarly,

glacier thinning and cooling in higher latitudes (e.g., Delcourt,

Liefferinge, Nola, & Pattyn, 2013; Irvine‐Fynn, Hodson, et al., 2011)

may also promote an increasing dominance of supraglacial hydrology.

Consequently, understanding the influence that the weathering crust

has on modulating supraglacial run‐off and its characteristics is

important to improve predictive hydrological models. This assessment

of weathering crust hydrology presents a first step to better

characterizing this commonly overlooked supraglacial flow path and

exploring the controls that dictate spatial and temporal variation in

hydraulic conductivity of near‐surface glacier ice.

5 | CONCLUSIONS

We present a robust but simple piezometer probe design that permits

low‐cost, high‐resolution, repeatable water‐level monitoring. The eco-

nomical nature of the piezometer design, combined with its limited

power requirements, makes it ideally suited to spatially widespread
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deployment in remote locations and for hydrological applications

beyond those described here. We describe a field methodology that

allows spatially widespread monitoring of glacier weathering crust

water‐level fluctuations at multiple sites. Data collected from a spa-

tially extensive suite of field sites allow examination of weathering

crust K, and we quantify a mean K of 0.185 m day−1, which is an equiv-

alent value to that seen for sandstone and firn and, therefore, leads us

to regard the weathering crust as a hydrologically poor, impervious

aquifer that can delay water transfer through the supraglacial hydro-

logical system and act as a transient, multiday storage reservoir within

this network. Our data show unequivocal evidence for spatially and

temporally varying supraglacial storage and regulation of meltwater,

as hypothesized by Munro (2011) and Smith et al. (2017). This role

of the weathering crust as a regulator of meltwater egress has the

potential to impact not only on meltwater discharge but also the

supraglacial ecosystem, through influencing the transport and resi-

dence time of microbes, fine mineral grains, contaminants, and associ-

ated nutrients. Such impurity and biogeochemical fluxes, and their

basin‐scale export, have consequent impacts upon the supraglacial

and downstream environments at a range of spatial and temporal

scales. Our analysis demonstrates that the precise nature of the con-

trols that drive the hydrological characteristics of the weathering crust

are clearly complex and multifaceted. Although water table height

clearly exerts a fundamental control on apparent hydraulic conductiv-

ity, detailed investigations of the hydrological evolution of the glacial

weathering crust and the role of hyperlocal ice structure and crystal-

lography, and the consequent impacts on near‐surface sedimentary

systems and ecosystems, likely represent fruitful avenues for further

investigation.
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